34
35
36:- module(simplex,
37 [
38 assignment/2,
39 constraint/3,
40 constraint/4,
41 constraint_add/4,
42 gen_state/1,
43 gen_state_clpr/1,
44 gen_state_clpr/2,
45 maximize/3,
46 minimize/3,
47 objective/2,
48 shadow_price/3,
49 transportation/4,
50 variable_value/3
51 ]). 52
53:- if(exists_source(library(clpr))). 54:- use_module(library(clpr)). 55:- endif. 56:- use_module(library(assoc)). 57:- use_module(library(pio)). 58
59:- autoload(library(apply), [foldl/4, maplist/2, maplist/3]). 60:- autoload(library(lists), [flatten/2, member/2, nth0/3, reverse/2, select/3]).
248
249gen_state_clpr(State) :- gen_state_clpr([], State).
250
251gen_state_clpr(Options, State) :-
252 ( memberchk(eps=_, Options) -> Options1 = Options
253 ; Options1 = [eps=1.0e-6|Options]
254 ),
255 State = clpr_state(Options1, [], []).
256
257clpr_state_options(clpr_state(Os, _, _), Os).
258clpr_state_constraints(clpr_state(_, Cs, _), Cs).
259clpr_state_integrals(clpr_state(_, _, Is), Is).
260clpr_state_add_integral(I, clpr_state(Os, Cs, Is), clpr_state(Os, Cs, [I|Is])).
261clpr_state_add_constraint(C, clpr_state(Os, Cs, Is), clpr_state(Os, [C|Cs], Is)).
262clpr_state_set_constraints(Cs, clpr_state(Os,_,Is), clpr_state(Os, Cs, Is)).
263
264clpr_constraint(Name, Constraint, S0, S) :-
265 ( Constraint = integral(Var) -> clpr_state_add_integral(Var, S0, S)
266 ; Constraint =.. [Op,Left,Right],
267 coeff_one(Left, Left1),
268 clpr_state_add_constraint(c(Name, Left1, Op, Right), S0, S)
269 ).
270
271clpr_constraint(Constraint, S0, S) :-
272 clpr_constraint(0, Constraint, S0, S).
273
274clpr_shadow_price(clpr_solved(_,_,Duals,_), Name, Value) :-
275 memberchk(Name-Value0, Duals),
276 Value is Value0.
277 278 279 280 281 282
283
284
285clpr_make_variables(Cs, Aliases) :-
286 clpr_constraints_variables(Cs, Variables0, []),
287 sort(Variables0, Variables1),
288 pairs_keys(Aliases, Variables1).
289
290clpr_constraints_variables([]) --> [].
291clpr_constraints_variables([c(_, Left, _, _)|Cs]) -->
292 variables(Left),
293 clpr_constraints_variables(Cs).
294
295clpr_set_up(Aliases, c(_Name, Left, Op, Right)) :-
296 clpr_translate_linsum(Left, Aliases, LinSum),
297 CLPRConstraint =.. [Op, LinSum, Right],
298 clpr:{ CLPRConstraint }.
299
300clpr_set_up_noneg(Aliases, Var) :-
301 memberchk(Var-CLPVar, Aliases),
302 { CLPVar >= 0 }.
303
304clpr_translate_linsum([], _, 0).
305clpr_translate_linsum([Coeff*Var|Ls], Aliases, LinSum) :-
306 memberchk(Var-CLPVar, Aliases),
307 LinSum = Coeff*CLPVar + LinRest,
308 clpr_translate_linsum(Ls, Aliases, LinRest).
309
310clpr_dual(Objective0, S0, DualValues) :-
311 clpr_state_constraints(S0, Cs0),
312 clpr_constraints_variables(Cs0, Variables0, []),
313 sort(Variables0, Variables1),
314 maplist(clpr_standard_form, Cs0, Cs1),
315 clpr_include_all_vars(Cs1, Variables1, Cs2),
316 clpr_merge_into(Variables1, Objective0, Objective, []),
317 clpr_unique_names(Cs2, 0, Names),
318 maplist(clpr_constraint_coefficient, Cs2, Coefficients),
319 lists_transpose(Coefficients, TCs),
320 maplist(clpr_dual_constraints(Names), TCs, Objective, DualConstraints),
321 phrase(clpr_nonneg_constraints(Cs2, Names), DualNonNeg),
322 append(DualConstraints, DualNonNeg, DualConstraints1),
323 maplist(clpr_dual_objective, Cs2, Names, DualObjective),
324 clpr_make_variables(DualConstraints1, Aliases),
325 maplist(clpr_set_up(Aliases), DualConstraints1),
326 clpr_translate_linsum(DualObjective, Aliases, LinExpr),
327 minimize(LinExpr),
328 Aliases = DualValues.
329
330
331
332clpr_dual_objective(c(_, _, _, Right), Name, Right*Name).
333
334clpr_nonneg_constraints([], _) --> [].
335clpr_nonneg_constraints([C|Cs], [Name|Names]) -->
336 { C = c(_, _, Op, _) },
337 ( { Op == (=<) } -> [c(0, [1*Name], (>=), 0)]
338 ; []
339 ),
340 clpr_nonneg_constraints(Cs, Names).
341
342
343clpr_dual_constraints(Names, Coeffs, O*_, Constraint) :-
344 maplist(clpr_dual_linsum, Coeffs, Names, Linsum),
345 Constraint = c(0, Linsum, (>=), O).
346
347clpr_dual_linsum(Coeff, Name, Coeff*Name).
348
349clpr_constraint_coefficient(c(_, Left, _, _), Coeff) :-
350 maplist(all_coeffs, Left, Coeff).
351
352all_coeffs(Coeff*_, Coeff).
353
354clpr_unique_names([], _, []).
355clpr_unique_names([C0|Cs0], Num, [N|Ns]) :-
356 C0 = c(Name, _, _, _),
357 ( Name == 0 -> N = Num, Num1 is Num + 1
358 ; N = Name, Num1 = Num
359 ),
360 clpr_unique_names(Cs0, Num1, Ns).
361
362clpr_include_all_vars([], _, []).
363clpr_include_all_vars([C0|Cs0], Variables, [C|Cs]) :-
364 C0 = c(Name, Left0, Op, Right),
365 clpr_merge_into(Variables, Left0, Left, []),
366 C = c(Name, Left, Op, Right),
367 clpr_include_all_vars(Cs0, Variables, Cs).
368
369clpr_merge_into([], _, Ls, Ls).
370clpr_merge_into([V|Vs], Left, Ls0, Ls) :-
371 ( member(Coeff*V, Left) ->
372 Ls0 = [Coeff*V|Rest]
373 ;
374 Ls0 = [0*V|Rest]
375 ),
376 clpr_merge_into(Vs, Left, Rest, Ls).
377
378
379
380
381clpr_maximize(Expr0, S0, S) :-
382 coeff_one(Expr0, Expr),
383 clpr_state_constraints(S0, Cs),
384 clpr_make_variables(Cs, Aliases),
385 maplist(clpr_set_up(Aliases), Cs),
386 clpr_constraints_variables(Cs, Variables0, []),
387 sort(Variables0, Variables1),
388 maplist(clpr_set_up_noneg(Aliases), Variables1),
389 clpr_translate_linsum(Expr, Aliases, LinExpr),
390 clpr_state_integrals(S0, Is),
391 ( Is == [] ->
392 maximize(LinExpr),
393 Sup is LinExpr,
394 clpr_dual(Expr, S0, DualValues),
395 S = clpr_solved(Sup, Aliases, DualValues, S0)
396 ;
397 clpr_state_options(S0, Options),
398 memberchk(eps=Eps, Options),
399 maplist(clpr_fetch_var(Aliases), Is, Vars),
400 bb_inf(Vars, -LinExpr, Sup, Vertex, Eps),
401 pairs_keys_values(Values, Is, Vertex),
402 403 Sup1 is -Sup,
404 S = clpr_solved(Sup1, Values, [], S0)
405 ).
406
407clpr_minimize(Expr0, S0, S) :-
408 coeff_one(Expr0, Expr1),
409 maplist(linsum_negate, Expr1, Expr2),
410 clpr_maximize(Expr2, S0, S1),
411 S1 = clpr_solved(Sup, Values, Duals, S0),
412 Inf is -Sup,
413 S = clpr_solved(Inf, Values, Duals, S0).
414
415clpr_fetch_var(Aliases, Var, X) :- memberchk(Var-X, Aliases).
416
417clpr_variable_value(clpr_solved(_, Aliases, _, _), Variable, Value) :-
418 memberchk(Variable-Value0, Aliases),
419 Value is Value0.
420 421 422 423 424 425
426clpr_objective(clpr_solved(Obj, _, _, _), Obj).
427
428clpr_standard_form(c(Name, Left, Op, Right), S) :-
429 clpr_standard_form_(Op, Name, Left, Right, S).
430
431clpr_standard_form_((=), Name, Left, Right, c(Name, Left, (=), Right)).
432clpr_standard_form_((>=), Name, Left, Right, c(Name, Left1, (=<), Right1)) :-
433 Right1 is -Right,
434 maplist(linsum_negate, Left, Left1).
435clpr_standard_form_((=<), Name, Left, Right, c(Name, Left, (=<), Right)).
436
437
453
454
455find_row(Variable, [Row|Rows], R) :-
456 Row = row(V, _, _),
457 ( V == Variable -> R = Row
458 ; find_row(Variable, Rows, R)
459 ).
466variable_value(State, Variable, Value) :-
467 functor(State, F, _),
468 ( F == solved ->
469 solved_tableau(State, Tableau),
470 tableau_rows(Tableau, Rows),
471 ( find_row(Variable, Rows, Row) -> Row = row(_, _, Value)
472 ; Value = 0
473 )
474 ; F == clpr_solved -> clpr_variable_value(State, Variable, Value)
475 ).
476
477var_zero(State, _Coeff*Var) :- variable_value(State, Var, 0).
478
479list_first(Ls, F, Index) :- once(nth0(Index, Ls, F)).
487shadow_price(State, Name, Value) :-
488 functor(State, F, _),
489 ( F == solved ->
490 solved_tableau(State, Tableau),
491 tableau_objective(Tableau, row(_,Left,_)),
492 tableau_variables(Tableau, Variables),
493 solved_names(State, Names),
494 memberchk(user(Name)-Var, Names),
495 list_first(Variables, Var, Nth0),
496 nth0(Nth0, Left, Value)
497 ; F == clpr_solved -> clpr_shadow_price(State, Name, Value)
498 ).
505objective(State, Obj) :-
506 functor(State, F, _),
507 ( F == solved ->
508 solved_tableau(State, Tableau),
509 tableau_objective(Tableau, Objective),
510 Objective = row(_, _, Obj)
511 ; clpr_objective(State, Obj)
512 ).
513
514 515
516tableau_objective(tableau(Obj, _, _, _), Obj).
517tableau_rows(tableau(_, _, _, Rows), Rows).
518tableau_indicators(tableau(_, _, Inds, _), Inds).
519tableau_variables(tableau(_, Vars, _, _), Vars).
520
538
539
540constraint_name(c(Name, _, _, _), Name).
541constraint_op(c(_, _, Op, _), Op).
542constraint_left(c(_, Left, _, _), Left).
543constraint_right(c(_, _, _, Right), Right).
549gen_state(state(0,[],[],[])).
550
551state_add_constraint(C, S0, S) :-
552 ( constraint_name(C, 0), constraint_left(C, [_Coeff*_Var]) ->
553 state_merge_constraint(C, S0, S)
554 ; state_add_constraint_(C, S0, S)
555 ).
556
557state_add_constraint_(C, state(VID,Ns,Cs,Is), state(VID,Ns,[C|Cs],Is)).
558
559state_merge_constraint(C, S0, S) :-
560 constraint_left(C, [Coeff0*Var0]),
561 constraint_right(C, Right0),
562 constraint_op(C, Op),
563 ( Coeff0 =:= 0 ->
564 ( Op == (=) -> Right0 =:= 0, S0 = S
565 ; Op == (=<) -> S0 = S
566 ; Op == (>=) -> Right0 =:= 0, S0 = S
567 )
568 ; Coeff0 < 0 -> state_add_constraint_(C, S0, S)
569 ; Right is Right0 rdiv Coeff0,
570 state_constraints(S0, Cs),
571 ( select(c(0, [1*Var0], Op, CRight), Cs, RestCs) ->
572 ( Op == (=) -> CRight =:= Right, S0 = S
573 ; Op == (=<) ->
574 NewRight is min(Right, CRight),
575 NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
576 state_set_constraints(NewCs, S0, S)
577 ; Op == (>=) ->
578 NewRight is max(Right, CRight),
579 NewCs = [c(0, [1*Var0], Op, NewRight)|RestCs],
580 state_set_constraints(NewCs, S0, S)
581 )
582 ; state_add_constraint_(c(0, [1*Var0], Op, Right), S0, S)
583 )
584 ).
585
586
587state_add_name(Name, Var), [state(VID,[Name-Var|Ns],Cs,Is)] -->
588 [state(VID,Ns,Cs,Is)].
589
590state_add_integral(Var, state(VID,Ns,Cs,Is), state(VID,Ns,Cs,[Var|Is])).
591
592state_constraints(state(_, _, Cs, _), Cs).
593state_names(state(_,Names,_,_), Names).
594state_integrals(state(_,_,_,Is), Is).
595state_set_constraints(Cs, state(VID,Ns,_,Is), state(VID,Ns,Cs,Is)).
596state_set_integrals(Is, state(VID,Ns,Cs,_), state(VID,Ns,Cs,Is)).
597
598
599state_next_var(VarID0), [state(VarID1,Names,Cs,Is)] -->
600 [state(VarID0,Names,Cs,Is)],
601 { VarID1 is VarID0 + 1 }.
602
603solved_tableau(solved(Tableau, _, _), Tableau).
604solved_names(solved(_, Names,_), Names).
605solved_integrals(solved(_,_,Is), Is).
606
623constraint(C, S0, S) :-
624 functor(S0, F, _),
625 ( F == state ->
626 ( C = integral(Var) -> state_add_integral(Var, S0, S)
627 ; constraint_(0, C, S0, S)
628 )
629 ; F == clpr_state -> clpr_constraint(C, S0, S)
630 ).
637constraint(Name, C, S0, S) :- constraint_(user(Name), C, S0, S).
638
639constraint_(Name, C, S0, S) :-
640 functor(S0, F, _),
641 ( F == state ->
642 ( C = integral(Var) -> state_add_integral(Var, S0, S)
643 ; C =.. [Op, Left0, Right0],
644 coeff_one(Left0, Left),
645 Right0 >= 0,
646 Right is rationalize(Right0),
647 state_add_constraint(c(Name, Left, Op, Right), S0, S)
648 )
649 ; F == clpr_state -> clpr_constraint(Name, C, S0, S)
650 ).
658constraint_add(Name, A, S0, S) :-
659 functor(S0, F, _),
660 ( F == state ->
661 state_constraints(S0, Cs),
662 add_left(Cs, user(Name), A, Cs1),
663 state_set_constraints(Cs1, S0, S)
664 ; F == clpr_state ->
665 clpr_state_constraints(S0, Cs),
666 add_left(Cs, Name, A, Cs1),
667 clpr_state_set_constraints(Cs1, S0, S)
668 ).
669
670
671add_left([c(Name,Left0,Op,Right)|Cs], V, A, [c(Name,Left,Op,Right)|Rest]) :-
672 ( Name == V -> append(A, Left0, Left), Rest = Cs
673 ; Left0 = Left, add_left(Cs, V, A, Rest)
674 ).
675
676branching_variable(State, Variable) :-
677 solved_integrals(State, Integrals),
678 member(Variable, Integrals),
679 variable_value(State, Variable, Value),
680 \+ integer(Value).
681
682
683worth_investigating(ZStar0, _, _) :- var(ZStar0).
684worth_investigating(ZStar0, AllInt, Z) :-
685 nonvar(ZStar0),
686 ( AllInt =:= 1 -> Z1 is floor(Z)
687 ; Z1 = Z
688 ),
689 Z1 > ZStar0.
690
691
692branch_and_bound(Objective, Solved, AllInt, ZStar0, ZStar, S0, S, Found) :-
693 objective(Solved, Z),
694 ( worth_investigating(ZStar0, AllInt, Z) ->
695 ( branching_variable(Solved, BrVar) ->
696 variable_value(Solved, BrVar, Value),
697 Value1 is floor(Value),
698 Value2 is Value1 + 1,
699 constraint([BrVar] =< Value1, S0, SubProb1),
700 ( maximize_(Objective, SubProb1, SubSolved1) ->
701 Sub1Feasible = 1,
702 objective(SubSolved1, Obj1)
703 ; Sub1Feasible = 0
704 ),
705 constraint([BrVar] >= Value2, S0, SubProb2),
706 ( maximize_(Objective, SubProb2, SubSolved2) ->
707 Sub2Feasible = 1,
708 objective(SubSolved2, Obj2)
709 ; Sub2Feasible = 0
710 ),
711 ( Sub1Feasible =:= 1, Sub2Feasible =:= 1 ->
712 ( Obj1 >= Obj2 ->
713 First = SubProb1,
714 Second = SubProb2,
715 FirstSolved = SubSolved1,
716 SecondSolved = SubSolved2
717 ; First = SubProb2,
718 Second = SubProb1,
719 FirstSolved = SubSolved2,
720 SecondSolved = SubSolved1
721 ),
722 branch_and_bound(Objective, FirstSolved, AllInt, ZStar0, ZStar1, First, Solved1, Found1),
723 branch_and_bound(Objective, SecondSolved, AllInt, ZStar1, ZStar2, Second, Solved2, Found2)
724 ; Sub1Feasible =:= 1 ->
725 branch_and_bound(Objective, SubSolved1, AllInt, ZStar0, ZStar1, SubProb1, Solved1, Found1),
726 Found2 = 0
727 ; Sub2Feasible =:= 1 ->
728 Found1 = 0,
729 branch_and_bound(Objective, SubSolved2, AllInt, ZStar0, ZStar2, SubProb2, Solved2, Found2)
730 ; Found1 = 0, Found2 = 0
731 ),
732 ( Found1 =:= 1, Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
733 ; Found1 =:= 1 -> S = Solved1, ZStar = ZStar1
734 ; Found2 =:= 1 -> S = Solved2, ZStar = ZStar2
735 ; S = S0, ZStar = ZStar0
736 ),
737 Found is max(Found1, Found2)
738 ; S = Solved, ZStar = Z, Found = 1
739 )
740 ; ZStar = ZStar0, S = S0, Found = 0
741 ).
751maximize(Z0, S0, S) :-
752 coeff_one(Z0, Z1),
753 functor(S0, F, _),
754 ( F == state -> maximize_mip(Z1, S0, S)
755 ; F == clpr_state -> clpr_maximize(Z1, S0, S)
756 ).
757
758maximize_mip(Z, S0, S) :-
759 maximize_(Z, S0, Solved),
760 state_integrals(S0, Is),
761 ( Is == [] -> S = Solved
762 ; 763 764 reverse(Is, Is1),
765 state_set_integrals(Is1, S0, S1),
766 ( all_integers(Z, Is1) -> AllInt = 1
767 ; AllInt = 0
768 ),
769 branch_and_bound(Z, Solved, AllInt, _, _, S1, S, 1)
770 ).
771
772all_integers([], _).
773all_integers([Coeff*V|Rest], Is) :-
774 integer(Coeff),
775 memberchk(V, Is),
776 all_integers(Rest, Is).
782minimize(Z0, S0, S) :-
783 coeff_one(Z0, Z1),
784 functor(S0, F, _),
785 ( F == state ->
786 maplist(linsum_negate, Z1, Z2),
787 maximize_mip(Z2, S0, S1),
788 solved_tableau(S1, tableau(Obj, Vars, Inds, Rows)),
789 solved_names(S1, Names),
790 Obj = row(z, Left0, Right0),
791 all_times(Left0, -1, Left),
792 Right is -Right0,
793 Obj1 = row(z, Left, Right),
794 state_integrals(S0, Is),
795 S = solved(tableau(Obj1, Vars, Inds, Rows), Names, Is)
796 ; F == clpr_state -> clpr_minimize(Z1, S0, S)
797 ).
798
799op_pendant(>=, =<).
800op_pendant(=<, >=).
801
802constraints_collapse([]) --> [].
803constraints_collapse([C|Cs]) -->
804 { C = c(Name, Left, Op, Right) },
805 ( { Name == 0, Left = [1*Var], op_pendant(Op, P) } ->
806 { Pendant = c(0, [1*Var], P, Right) },
807 ( { select(Pendant, Cs, Rest) } ->
808 [c(0, Left, (=), Right)],
809 { CsLeft = Rest }
810 ; [C],
811 { CsLeft = Cs }
812 )
813 ; [C],
814 { CsLeft = Cs }
815 ),
816 constraints_collapse(CsLeft).
817
819
820maximize_(Z, S0, S) :-
821 state_constraints(S0, Cs0),
822 phrase(constraints_collapse(Cs0), Cs1),
823 phrase(constraints_normalize(Cs1, Cs, As0), [S0], [S1]),
824 flatten(As0, As1),
825 ( As1 == [] ->
826 make_tableau(Z, Cs, Tableau0),
827 simplex(Tableau0, Tableau),
828 state_names(S1, Names),
829 state_integrals(S1, Is),
830 S = solved(Tableau, Names, Is)
831 ; state_names(S1, Names),
832 state_integrals(S1, Is),
833 two_phase_simplex(Z, Cs, As1, Names, Is, S)
834 ).
835
836make_tableau(Z, Cs, Tableau) :-
837 ZC = c(_, Z, _),
838 phrase(constraints_variables([ZC|Cs]), Variables0),
839 sort(Variables0, Variables),
840 constraints_rows(Cs, Variables, Rows),
841 linsum_row(Variables, Z, Objective1),
842 all_times(Objective1, -1, Obj),
843 length(Variables, LVs),
844 length(Ones, LVs),
845 all_one(Ones),
846 Tableau = tableau(row(z, Obj, 0), Variables, Ones, Rows).
847
848all_one(Ones) :- maplist(=(1), Ones).
849
850proper_form(Variables, Rows, _Coeff*A, Obj0, Obj) :-
851 ( find_row(A, Rows, PivotRow) ->
852 list_first(Variables, A, Col),
853 row_eliminate(Obj0, PivotRow, Col, Obj)
854 ; Obj = Obj0
855 ).
856
857
858two_phase_simplex(Z, Cs, As, Names, Is, S) :-
859 860 make_tableau(As, Cs, Tableau0),
861 Tableau0 = tableau(Obj0, Variables, Inds, Rows),
862 foldl(proper_form(Variables, Rows), As, Obj0, Obj),
863 simplex(tableau(Obj, Variables, Inds, Rows), Tableau1),
864 maplist(var_zero(solved(Tableau1, _, _)), As),
865 866 tableau_rows(Tableau1, Rows2),
867 eliminate_artificial(As, As, Variables, Rows2, Rows3),
868 list_nths(As, Variables, Nths0),
869 nths_to_zero(Nths0, Inds, Inds1),
870 linsum_row(Variables, Z, Objective),
871 all_times(Objective, -1, Objective1),
872 foldl(proper_form(Variables, Rows3), Z, row(z, Objective1, 0), ObjRow),
873 simplex(tableau(ObjRow, Variables, Inds1, Rows3), Tableau),
874 S = solved(Tableau, Names, Is).
875
881
882eliminate_artificial([], _, _, Rows, Rows).
883eliminate_artificial([_Coeff*A|Rest], As, Variables, Rows0, Rows) :-
884 ( select(row(A, Left, 0), Rows0, Others) ->
885 ( nth0(Col, Left, Coeff),
886 Coeff =\= 0,
887 nth0(Col, Variables, Var),
888 \+ memberchk(_*Var, As) ->
889 row_divide(row(A, Left, 0), Coeff, Row),
890 gauss_elimination(Rows0, Row, Col, Rows1),
891 swap_basic(Rows1, A, Var, Rows2)
892 ; Rows2 = Others
893 )
894 ; Rows2 = Rows0
895 ),
896 eliminate_artificial(Rest, As, Variables, Rows2, Rows).
897
898nths_to_zero([], Inds, Inds).
899nths_to_zero([Nth|Nths], Inds0, Inds) :-
900 nth_to_zero(Inds0, 0, Nth, Inds1),
901 nths_to_zero(Nths, Inds1, Inds).
902
903nth_to_zero([], _, _, []).
904nth_to_zero([I|Is], Curr, Nth, [Z|Zs]) :-
905 ( Curr =:= Nth -> [Z|Zs] = [0|Is]
906 ; Z = I,
907 Next is Curr + 1,
908 nth_to_zero(Is, Next, Nth, Zs)
909 ).
910
911
912list_nths([], _, []).
913list_nths([_Coeff*A|As], Variables, [Nth|Nths]) :-
914 list_first(Variables, A, Nth),
915 list_nths(As, Variables, Nths).
916
917
918linsum_negate(Coeff0*Var, Coeff*Var) :- Coeff is -Coeff0.
919
920linsum_row([], _, []).
921linsum_row([V|Vs], Ls, [C|Cs]) :-
922 ( memberchk(Coeff*V, Ls) -> C is rationalize(Coeff)
923 ; C = 0
924 ),
925 linsum_row(Vs, Ls, Cs).
926
927constraints_rows([], _, []).
928constraints_rows([C|Cs], Vars, [R|Rs]) :-
929 C = c(Var, Left0, Right),
930 linsum_row(Vars, Left0, Left),
931 R = row(Var, Left, Right),
932 constraints_rows(Cs, Vars, Rs).
933
934constraints_normalize([], [], []) --> [].
935constraints_normalize([C0|Cs0], [C|Cs], [A|As]) -->
936 { constraint_op(C0, Op),
937 constraint_left(C0, Left),
938 constraint_right(C0, Right),
939 constraint_name(C0, Name),
940 Con =.. [Op, Left, Right] },
941 constraint_normalize(Con, Name, C, A),
942 constraints_normalize(Cs0, Cs, As).
943
944constraint_normalize(As0 =< B0, Name, c(Slack, [1*Slack|As0], B0), []) -->
945 state_next_var(Slack),
946 state_add_name(Name, Slack).
947constraint_normalize(As0 = B0, Name, c(AID, [1*AID|As0], B0), [-1*AID]) -->
948 state_next_var(AID),
949 state_add_name(Name, AID).
950constraint_normalize(As0 >= B0, Name, c(AID, [-1*Slack,1*AID|As0], B0), [-1*AID]) -->
951 state_next_var(Slack),
952 state_next_var(AID),
953 state_add_name(Name, AID).
954
955coeff_one([], []).
956coeff_one([L|Ls], [Coeff*Var|Rest]) :-
957 ( L = A*B -> Coeff = A, Var = B
958 ; Coeff = 1, Var = L
959 ),
960 coeff_one(Ls, Rest).
961
962
963tableau_optimal(Tableau) :-
964 tableau_objective(Tableau, Objective),
965 tableau_indicators(Tableau, Indicators),
966 Objective = row(_, Left, _),
967 all_nonnegative(Left, Indicators).
968
969all_nonnegative([], []).
970all_nonnegative([Coeff|As], [I|Is]) :-
971 ( I =:= 0 -> true
972 ; Coeff >= 0
973 ),
974 all_nonnegative(As, Is).
975
976pivot_column(Tableau, PCol) :-
977 tableau_objective(Tableau, row(_, Left, _)),
978 tableau_indicators(Tableau, Indicators),
979 first_negative(Left, Indicators, 0, Index0, Val, RestL, RestI),
980 Index1 is Index0 + 1,
981 pivot_column(RestL, RestI, Val, Index1, Index0, PCol).
982
983first_negative([L|Ls], [I|Is], Index0, N, Val, RestL, RestI) :-
984 Index1 is Index0 + 1,
985 ( I =:= 0 -> first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
986 ; ( L < 0 -> N = Index0, Val = L, RestL = Ls, RestI = Is
987 ; first_negative(Ls, Is, Index1, N, Val, RestL, RestI)
988 )
989 ).
990
991
992pivot_column([], _, _, _, N, N).
993pivot_column([L|Ls], [I|Is], Coeff0, Index0, N0, N) :-
994 ( I =:= 0 -> Coeff1 = Coeff0, N1 = N0
995 ; ( L < Coeff0 -> Coeff1 = L, N1 = Index0
996 ; Coeff1 = Coeff0, N1 = N0
997 )
998 ),
999 Index1 is Index0 + 1,
1000 pivot_column(Ls, Is, Coeff1, Index1, N1, N).
1001
1002
1003pivot_row(Tableau, PCol, PRow) :-
1004 tableau_rows(Tableau, Rows),
1005 pivot_row(Rows, PCol, false, _, 0, 0, PRow).
1006
1007pivot_row([], _, Bounded, _, _, Row, Row) :- Bounded.
1008pivot_row([Row|Rows], PCol, Bounded0, Min0, Index0, PRow0, PRow) :-
1009 Row = row(_Var, Left, B),
1010 nth0(PCol, Left, Ae),
1011 ( Ae > 0 ->
1012 Bounded1 = true,
1013 Bound is B rdiv Ae,
1014 ( Bounded0 ->
1015 ( Bound < Min0 -> Min1 = Bound, PRow1 = Index0
1016 ; Min1 = Min0, PRow1 = PRow0
1017 )
1018 ; Min1 = Bound, PRow1 = Index0
1019 )
1020 ; Bounded1 = Bounded0, Min1 = Min0, PRow1 = PRow0
1021 ),
1022 Index1 is Index0 + 1,
1023 pivot_row(Rows, PCol, Bounded1, Min1, Index1, PRow1, PRow).
1024
1025
1026row_divide(row(Var, Left0, Right0), Div, row(Var, Left, Right)) :-
1027 all_divide(Left0, Div, Left),
1028 Right is Right0 rdiv Div.
1029
1030
1031all_divide([], _, []).
1032all_divide([R|Rs], Div, [DR|DRs]) :-
1033 DR is R rdiv Div,
1034 all_divide(Rs, Div, DRs).
1035
1036gauss_elimination([], _, _, []).
1037gauss_elimination([Row0|Rows0], PivotRow, Col, [Row|Rows]) :-
1038 PivotRow = row(PVar, _, _),
1039 Row0 = row(Var, _, _),
1040 ( PVar == Var -> Row = PivotRow
1041 ; row_eliminate(Row0, PivotRow, Col, Row)
1042 ),
1043 gauss_elimination(Rows0, PivotRow, Col, Rows).
1044
1045row_eliminate(row(Var, Ls0, R0), row(_, PLs, PR), Col, row(Var, Ls, R)) :-
1046 nth0(Col, Ls0, Coeff),
1047 ( Coeff =:= 0 -> Ls = Ls0, R = R0
1048 ; all_times_minus([PR|PLs], Coeff, [R0|Ls0], [R|Ls])
1049 ).
1050
1051all_times_minus([], _, _, []).
1052all_times_minus([A|As], T, [B|Bs], [AT|ATs]) :-
1053 ( A == 0 -> AT = B
1054 ; AT is B - A * T
1055 ),
1056 all_times_minus(As, T, Bs, ATs).
1057
1058all_times([], _, []).
1059all_times([A|As], T, [AT|ATs]) :-
1060 AT is A * T,
1061 all_times(As, T, ATs).
1062
1063simplex(Tableau0, Tableau) :-
1064 ( tableau_optimal(Tableau0) -> Tableau0 = Tableau
1065 ; pivot_column(Tableau0, PCol),
1066 pivot_row(Tableau0, PCol, PRow),
1067 Tableau0 = tableau(Obj0,Variables,Inds,Matrix0),
1068 nth0(PRow, Matrix0, Row0),
1069 Row0 = row(Leaving, Left0, _Right0),
1070 nth0(PCol, Left0, PivotElement),
1071 row_divide(Row0, PivotElement, Row1),
1072 gauss_elimination([Obj0|Matrix0], Row1, PCol, [Obj|Matrix1]),
1073 nth0(PCol, Variables, Entering),
1074 swap_basic(Matrix1, Leaving, Entering, Matrix),
1075 simplex(tableau(Obj,Variables,Inds,Matrix), Tableau)
1076 ).
1077
1078swap_basic([Row0|Rows0], Old, New, Matrix) :-
1079 Row0 = row(Var, Left, Right),
1080 ( Var == Old -> Matrix = [row(New, Left, Right)|Rows0]
1081 ; Matrix = [Row0|Rest],
1082 swap_basic(Rows0, Old, New, Rest)
1083 ).
1084
1085constraints_variables([]) --> [].
1086constraints_variables([c(_,Left,_)|Cs]) -->
1087 variables(Left),
1088 constraints_variables(Cs).
1089
1090variables([]) --> [].
1091variables([_Coeff*Var|Rest]) --> [Var], variables(Rest).
1092
1093
1096
1103
1111
1112arcs([], Assoc, Assoc).
1113arcs([arc(From0,To0,C)|As], Assoc0, Assoc) :-
1114 ( get_assoc(From0, Assoc0, From) -> Assoc1 = Assoc0
1115 ; put_assoc(From0, Assoc0, From, Assoc1),
1116 put_attr(From, node, From0)
1117 ),
1118 ( get_attr(From, edges, Es) -> true
1119 ; Es = []
1120 ),
1121 put_attr(F, flow, 0),
1122 put_attr(From, edges, [arc_to(To,F,C)|Es]),
1123 ( get_assoc(To0, Assoc1, To) -> Assoc2 = Assoc1
1124 ; put_assoc(To0, Assoc1, To, Assoc2),
1125 put_attr(To, node, To0)
1126 ),
1127 ( get_attr(To, edges, Es1) -> true
1128 ; Es1 = []
1129 ),
1130 put_attr(To, edges, [arc_from(From,F,C)|Es1]),
1131 arcs(As, Assoc2, Assoc).
1132
1133
1134edmonds_karp(Arcs0, Arcs) :-
1135 empty_assoc(E),
1136 arcs(Arcs0, E, Assoc),
1137 get_assoc(s, Assoc, S),
1138 get_assoc(t, Assoc, T),
1139 maximum_flow(S, T),
1140 1141 term_attvars(S, AttVars),
1142 phrase(flow_to_arcs(S), Ls),
1143 arcs_assoc(Ls, Arcs),
1144 maplist(del_attrs, AttVars).
1145
1146flow_to_arcs(V) -->
1147 ( { get_attr(V, edges, Es) } ->
1148 { del_attr(V, edges),
1149 get_attr(V, node, Name) },
1150 flow_to_arcs_(Es, Name)
1151 ; []
1152 ).
1153
1154flow_to_arcs_([], _) --> [].
1155flow_to_arcs_([E|Es], Name) -->
1156 edge_to_arc(E, Name),
1157 flow_to_arcs_(Es, Name).
1158
1159edge_to_arc(arc_from(_,_,_), _) --> [].
1160edge_to_arc(arc_to(To,F,C), Name) -->
1161 { get_attr(To, node, NTo),
1162 get_attr(F, flow, Flow) },
1163 [arc(Name,NTo,Flow,C)],
1164 flow_to_arcs(To).
1165
1166arcs_assoc(Arcs, Hash) :-
1167 empty_assoc(E),
1168 arcs_assoc(Arcs, E, Hash).
1169
1170arcs_assoc([], Hs, Hs).
1171arcs_assoc([arc(From,To,F,C)|Rest], Hs0, Hs) :-
1172 ( get_assoc(From, Hs0, As) -> Hs1 = Hs0
1173 ; put_assoc(From, Hs0, [], Hs1),
1174 empty_assoc(As)
1175 ),
1176 put_assoc(To, As, arc(From,To,F,C), As1),
1177 put_assoc(From, Hs1, As1, Hs2),
1178 arcs_assoc(Rest, Hs2, Hs).
1179
1180
1185
1186maximum_flow(S, T) :-
1187 ( augmenting_path([[S]], Levels, T) ->
1188 phrase(augmenting_path(S, T), Path),
1189 Path = [augment(_,First,_)|Rest],
1190 path_minimum(Rest, First, Min),
1191 1192 maplist(augment(Min), Path),
1193 maplist(maplist(clear_parent), Levels),
1194 maximum_flow(S, T)
1195 ; true
1196 ).
1197
1198clear_parent(V) :- del_attr(V, parent).
1199
1200augmenting_path(Levels0, Levels, T) :-
1201 Levels0 = [Vs|_],
1202 Levels1 = [Tos|Levels0],
1203 phrase(reachables(Vs), Tos),
1204 Tos = [_|_],
1205 ( member(To, Tos), To == T -> Levels = Levels1
1206 ; augmenting_path(Levels1, Levels, T)
1207 ).
1208
1209reachables([]) --> [].
1210reachables([V|Vs]) -->
1211 { get_attr(V, edges, Es) },
1212 reachables_(Es, V),
1213 reachables(Vs).
1214
1215reachables_([], _) --> [].
1216reachables_([E|Es], V) -->
1217 reachable(E, V),
1218 reachables_(Es, V).
1219
1220reachable(arc_from(V,F,_), P) -->
1221 ( { \+ get_attr(V, parent, _),
1222 get_attr(F, flow, Flow),
1223 Flow > 0 } ->
1224 { put_attr(V, parent, P-augment(F,Flow,-)) },
1225 [V]
1226 ; []
1227 ).
1228reachable(arc_to(V,F,C), P) -->
1229 ( { \+ get_attr(V, parent, _),
1230 get_attr(F, flow, Flow),
1231 ( C == inf ; Flow < C )} ->
1232 { ( C == inf -> Diff = inf
1233 ; Diff is C - Flow
1234 ),
1235 put_attr(V, parent, P-augment(F,Diff,+)) },
1236 [V]
1237 ; []
1238 ).
1239
1240
1241path_minimum([], Min, Min).
1242path_minimum([augment(_,A,_)|As], Min0, Min) :-
1243 ( A == inf -> Min1 = Min0
1244 ; Min1 is min(Min0,A)
1245 ),
1246 path_minimum(As, Min1, Min).
1247
1248augment(Min, augment(F,_,Sign)) :-
1249 get_attr(F, flow, Flow0),
1250 flow_(Sign, Flow0, Min, Flow),
1251 put_attr(F, flow, Flow).
1252
1253flow_(+, F0, A, F) :- F is F0 + A.
1254flow_(-, F0, A, F) :- F is F0 - A.
1255
1256augmenting_path(S, V) -->
1257 ( { V == S } -> []
1258 ; { get_attr(V, parent, V1-Augment) },
1259 [Augment],
1260 augmenting_path(S, V1)
1261 ).
1262
1264
1265naive_init(Supplies, _, Costs, Alphas, Betas) :-
1266 same_length(Supplies, Alphas),
1267 maplist(=(0), Alphas),
1268 lists_transpose(Costs, TCs),
1269 maplist(min_list, TCs, Betas).
1270
1272
1273lists_transpose([], []).
1274lists_transpose([L|Ls], Ts) :- foldl(transpose_, L, Ts, [L|Ls], _).
1275
1276transpose_(_, Fs, Lists0, Lists) :-
1277 maplist(list_first_rest, Lists0, Fs, Lists).
1278
1279list_first_rest([L|Ls], L, Ls).
1280
1298transportation(Supplies, Demands, Costs, Transport) :-
1299 length(Supplies, LAs),
1300 length(Demands, LBs),
1301 naive_init(Supplies, Demands, Costs, Alphas, Betas),
1302 network_head(Supplies, 1, SArcs, []),
1303 network_tail(Demands, 1, DArcs, []),
1304 numlist(1, LAs, Sources),
1305 numlist(1, LBs, Sinks0),
1306 maplist(make_sink, Sinks0, Sinks),
1307 append(SArcs, DArcs, Torso),
1308 alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow),
1309 flow_transport(Supplies, 1, Demands, Flow, Transport).
1310
1311flow_transport([], _, _, _, []).
1312flow_transport([_|Rest], N, Demands, Flow, [Line|Lines]) :-
1313 transport_line(Demands, N, 1, Flow, Line),
1314 N1 is N + 1,
1315 flow_transport(Rest, N1, Demands, Flow, Lines).
1316
1317transport_line([], _, _, _, []).
1318transport_line([_|Rest], I, J, Flow, [L|Ls]) :-
1319 ( get_assoc(I, Flow, As), get_assoc(p(J), As, arc(I,p(J),F,_)) -> L = F
1320 ; L = 0
1321 ),
1322 J1 is J + 1,
1323 transport_line(Rest, I, J1, Flow, Ls).
1324
1325
1326make_sink(N, p(N)).
1327
1328network_head([], _) --> [].
1329network_head([S|Ss], N) -->
1330 [arc(s,N,S)],
1331 { N1 is N + 1 },
1332 network_head(Ss, N1).
1333
1334network_tail([], _) --> [].
1335network_tail([D|Ds], N) -->
1336 [arc(p(N),t,D)],
1337 { N1 is N + 1 },
1338 network_tail(Ds, N1).
1339
1340network_connections([], _, _, _) --> [].
1341network_connections([A|As], Betas, [Cs|Css], N) -->
1342 network_connections(Betas, Cs, A, N, 1),
1343 { N1 is N + 1 },
1344 network_connections(As, Betas, Css, N1).
1345
1346network_connections([], _, _, _, _) --> [].
1347network_connections([B|Bs], [C|Cs], A, N, PN) -->
1348 ( { C =:= A + B } -> [arc(N,p(PN),inf)]
1349 ; []
1350 ),
1351 { PN1 is PN + 1 },
1352 network_connections(Bs, Cs, A, N, PN1).
1353
1354alpha_beta(Torso, Sources, Sinks, Costs, Alphas, Betas, Flow) :-
1355 network_connections(Alphas, Betas, Costs, 1, Cons, []),
1356 append(Torso, Cons, Arcs),
1357 edmonds_karp(Arcs, MaxFlow),
1358 mark_hashes(MaxFlow, MArcs, MRevArcs),
1359 all_markable(MArcs, MRevArcs, Markable),
1360 mark_unmark(Sources, Markable, MarkSources, UnmarkSources),
1361 ( MarkSources == [] -> Flow = MaxFlow
1362 ; mark_unmark(Sinks, Markable, MarkSinks0, UnmarkSinks0),
1363 maplist(un_p, MarkSinks0, MarkSinks),
1364 maplist(un_p, UnmarkSinks0, UnmarkSinks),
1365 MarkSources = [FirstSource|_],
1366 UnmarkSinks = [FirstSink|_],
1367 theta(FirstSource, FirstSink, Costs, Alphas, Betas, TInit),
1368 theta(MarkSources, UnmarkSinks, Costs, Alphas, Betas, TInit, Theta),
1369 duals_add(MarkSources, Alphas, Theta, Alphas1),
1370 duals_add(UnmarkSinks, Betas, Theta, Betas1),
1371 Theta1 is -Theta,
1372 duals_add(UnmarkSources, Alphas1, Theta1, Alphas2),
1373 duals_add(MarkSinks, Betas1, Theta1, Betas2),
1374 alpha_beta(Torso, Sources, Sinks, Costs, Alphas2, Betas2, Flow)
1375 ).
1376
1377mark_hashes(MaxFlow, Arcs, RevArcs) :-
1378 assoc_to_list(MaxFlow, FlowList),
1379 maplist(un_arc, FlowList, FlowList1),
1380 flatten(FlowList1, FlowList2),
1381 empty_assoc(E),
1382 mark_arcs(FlowList2, E, Arcs),
1383 mark_revarcs(FlowList2, E, RevArcs).
1384
1385un_arc(_-Ls0, Ls) :-
1386 assoc_to_list(Ls0, Ls1),
1387 maplist(un_arc_, Ls1, Ls).
1388
1389un_arc_(_-Ls, Ls).
1390
1391mark_arcs([], Arcs, Arcs).
1392mark_arcs([arc(From,To,F,C)|Rest], Arcs0, Arcs) :-
1393 ( get_assoc(From, Arcs0, As) -> true
1394 ; As = []
1395 ),
1396 ( C == inf -> As1 = [To|As]
1397 ; F < C -> As1 = [To|As]
1398 ; As1 = As
1399 ),
1400 put_assoc(From, Arcs0, As1, Arcs1),
1401 mark_arcs(Rest, Arcs1, Arcs).
1402
1403mark_revarcs([], Arcs, Arcs).
1404mark_revarcs([arc(From,To,F,_)|Rest], Arcs0, Arcs) :-
1405 ( get_assoc(To, Arcs0, Fs) -> true
1406 ; Fs = []
1407 ),
1408 ( F > 0 -> Fs1 = [From|Fs]
1409 ; Fs1 = Fs
1410 ),
1411 put_assoc(To, Arcs0, Fs1, Arcs1),
1412 mark_revarcs(Rest, Arcs1, Arcs).
1413
1414
1415un_p(p(N), N).
1416
1417duals_add([], Alphas, _, Alphas).
1418duals_add([S|Ss], Alphas0, Theta, Alphas) :-
1419 add_to_nth(1, S, Alphas0, Theta, Alphas1),
1420 duals_add(Ss, Alphas1, Theta, Alphas).
1421
1422add_to_nth(N, N, [A0|As], Theta, [A|As]) :- !,
1423 A is A0 + Theta.
1424add_to_nth(N0, N, [A|As0], Theta, [A|As]) :-
1425 N1 is N0 + 1,
1426 add_to_nth(N1, N, As0, Theta, As).
1427
1428
1429theta(Source, Sink, Costs, Alphas, Betas, Theta) :-
1430 nth1(Source, Costs, Row),
1431 nth1(Sink, Row, C),
1432 nth1(Source, Alphas, A),
1433 nth1(Sink, Betas, B),
1434 Theta is (C - A - B) rdiv 2.
1435
1436theta([], _, _, _, _, Theta, Theta).
1437theta([Source|Sources], Sinks, Costs, Alphas, Betas, Theta0, Theta) :-
1438 theta_(Sinks, Source, Costs, Alphas, Betas, Theta0, Theta1),
1439 theta(Sources, Sinks, Costs, Alphas, Betas, Theta1, Theta).
1440
1441theta_([], _, _, _, _, Theta, Theta).
1442theta_([Sink|Sinks], Source, Costs, Alphas, Betas, Theta0, Theta) :-
1443 theta(Source, Sink, Costs, Alphas, Betas, Theta1),
1444 Theta2 is min(Theta0, Theta1),
1445 theta_(Sinks, Source, Costs, Alphas, Betas, Theta2, Theta).
1446
1447
1448mark_unmark(Nodes, Hash, Mark, Unmark) :-
1449 mark_unmark(Nodes, Hash, Mark, [], Unmark, []).
1450
1451mark_unmark([], _, Mark, Mark, Unmark, Unmark).
1452mark_unmark([Node|Nodes], Markable, Mark0, Mark, Unmark0, Unmark) :-
1453 ( memberchk(Node, Markable) ->
1454 Mark0 = [Node|Mark1],
1455 Unmark0 = Unmark1
1456 ; Mark0 = Mark1,
1457 Unmark0 = [Node|Unmark1]
1458 ),
1459 mark_unmark(Nodes, Markable, Mark1, Mark, Unmark1, Unmark).
1460
1461all_markable(Flow, RevArcs, Markable) :-
1462 phrase(markable(s, [], _, Flow, RevArcs), Markable).
1463
1464all_markable([], Visited, Visited, _, _) --> [].
1465all_markable([To|Tos], Visited0, Visited, Arcs, RevArcs) -->
1466 ( { memberchk(To, Visited0) } -> { Visited0 = Visited1 }
1467 ; markable(To, [To|Visited0], Visited1, Arcs, RevArcs)
1468 ),
1469 all_markable(Tos, Visited1, Visited, Arcs, RevArcs).
1470
1471markable(Current, Visited0, Visited, Arcs, RevArcs) -->
1472 { ( Current = p(_) ->
1473 ( get_assoc(Current, RevArcs, Fs) -> true
1474 ; Fs = []
1475 )
1476 ; ( get_assoc(Current, Arcs, Fs) -> true
1477 ; Fs = []
1478 )
1479 ) },
1480 [Current],
1481 all_markable(Fs, [Current|Visited0], Visited, Arcs, RevArcs).
1482
1496
1497input(Ss, Ds, Costs) -->
1498 integer(NS),
1499 integer(ND),
1500 n_integers(NS, Ss),
1501 n_integers(ND, Ds),
1502 n_kvectors(NS, ND, Costs).
1503
1504n_kvectors(0, _, []) --> !.
1505n_kvectors(N, K, [V|Vs]) -->
1506 n_integers(K, V),
1507 { N1 is N - 1 },
1508 n_kvectors(N1, K, Vs).
1509
1510n_integers(0, []) --> !.
1511n_integers(N, [I|Is]) --> integer(I), { N1 is N - 1 }, n_integers(N1, Is).
1512
1513
1514number([D|Ds]) --> digit(D), number(Ds).
1515number([D]) --> digit(D).
1516
1517digit(D) --> [D], { between(0'0, 0'9, D) }.
1518
1519integer(N) --> number(Ds), !, ws, { name(N, Ds) }.
1520
1521ws --> [W], { W =< 0' }, !, ws. 1522ws --> [].
1523
1524solve(File) :-
1525 time((phrase_from_file(input(Supplies, Demands, Costs), File),
1526 transportation(Supplies, Demands, Costs, Matrix),
1527 maplist(print_row, Matrix))),
1528 halt.
1529
1530print_row(R) :- maplist(print_row_, R), nl.
1531
1532print_row_(N) :- format("~w ", [N]).
1533
1534
1538
1539
1541
1543
1545
1546
1559assignment(Costs, Assignment) :-
1560 length(Costs, LC),
1561 length(Supply, LC),
1562 all_one(Supply),
1563 transportation(Supply, Supply, Costs, Assignment).
1564
1568
1569:- multifile prolog:message//1. 1570
1571prolog:message(simplex(bounded)) -->
1572 ['Using library(simplex) with bounded arithmetic may yield wrong results.'-[]].
1573
1574warn_if_bounded_arithmetic :-
1575 ( current_prolog_flag(bounded, true) ->
1576 print_message(warning, simplex(bounded))
1577 ; true
1578 ).
1579
1580:- initialization(warn_if_bounded_arithmetic).
Solve linear programming problems
Introduction
A linear programming problem or simply linear program (LP) consists of:
The goal is to assign values to the variables so as to maximize (or minimize) the value of the objective function while satisfying all constraints.
Many optimization problems can be modeled in this way. As one basic example, consider a knapsack with fixed capacity C, and a number of items with sizes
s(i)
and valuesv(i)
. The goal is to put as many items as possible in the knapsack (not exceeding its capacity) while maximizing the sum of their values.As another example, suppose you are given a set of coins with certain values, and you are to find the minimum number of coins such that their values sum up to a fixed amount. Instances of these problems are solved below.
All numeric quantities are converted to rationals via rationalize/1, and rational arithmetic is used throughout solving linear programs. In the current implementation, all variables are implicitly constrained to be non-negative. This may change in future versions, and non-negativity constraints should therefore be stated explicitly.
Example 1
This is the "radiation therapy" example, taken from Introduction to Operations Research by Hillier and Lieberman.
Prolog DCG notation is used to implicitly thread the state through posting the constraints:
An example query:
Example 2
Here is an instance of the knapsack problem described above, where
C = 8
, and we have two types of items: One item with value 7 and size 6, and 2 items each having size 4 and value 4. We introduce two variables,x(1)
andx(2)
that denote how many items to take of each type.An example query yields:
That is, we are to take the one item of the first type, and half of one of the items of the other type to maximize the total value of items in the knapsack.
If items can not be split, integrality constraints have to be imposed:
Now the result is different:
That is, we are to take only the two items of the second type. Notice in particular that always choosing the remaining item with best performance (ratio of value to size) that still fits in the knapsack does not necessarily yield an optimal solution in the presence of integrality constraints.
Example 3
We are given:
The task is to find a minimal number of these coins that amount to 111 units in total. We introduce variables
c(1)
,c(5)
andc(20)
denoting how many coins to take of the respective type:An example query: