Availability:C-language interface function
FALSE
. This function is rarely used directly.
Instead, errors are typically raised using the functions in section
12.4.6 or the C api functions that end in _ex
such as PL_get_atom_ex().
Below we give an example returning an exception from a foreign predicate
the verbose way. Note that the exception is raised in a sequence of
actions connected using
&&
. This ensures that a proper exception is raised
should any of the calls used to build or raise the exception themselves
raise an exception. In this simple case PL_new_term_ref()
is guaranteed to succeed because the system guarantees at least 10
available term references before entering the foreign predicate. PL_unify_term()
however may raise a resource exception for the global stack.
foreign_t pl_hello(term_t to) { char *s; if ( PL_get_atom_chars(to, &s) ) { Sprintf("Hello \"%s\"\n", s); return TRUE; } else { term_t except; return ( (except=PL_new_term_ref()) && PL_unify_term(except, PL_FUNCTOR_CHARS, "type_error", 2, PL_CHARS, "atom", PL_TERM, to) && PL_raise_exception(except) ); } }
For reference, the preferred implementation of the above is below.
The
CVT_EXCEPTION
tells the system to generate an exception if
the conversion fails. The other CVT_
flags define the
admissible types and REP_MB
requests the string to be
provided in the current locale representation. This implies
that Unicode text is printed correctly if the current environment can
represent it. If not, a representation_error
is raised.
foreign_t pl_hello(term_t to) { char *s; if ( PL_get_chars(to, &s, CVT_ATOM|CVT_STRING|CVT_EXCEPTION|REP_MB) ) { Sprintf("Hello \"%s\"\n", s); return TRUE; } return FALSE; }